3DPrinting
3DPrinting is a place where makers of all skill levels and walks of life can learn about and discuss 3D printing and development of 3D printed parts and devices.
The r/functionalprint community is now located at: or !functionalprint@fedia.io
There are CAD communities available at: !cad@lemmy.world or !freecad@lemmy.ml
Rules
-
No bigotry - including racism, sexism, ableism, homophobia, transphobia, or xenophobia. Code of Conduct.
-
Be respectful, especially when disagreeing. Everyone should feel welcome here.
-
No porn (NSFW prints are acceptable but must be marked NSFW)
-
No Ads / Spamming / Guerrilla Marketing
-
Do not create links to reddit
-
If you see an issue please flag it
-
No guns
-
No injury gore posts
If you need an easy way to host pictures, https://catbox.moe/ may be an option. Be ethical about what you post and donate if you are able or use this a lot. It is just an individual hosting content, not a company. The image embedding syntax for Lemmy is ![](URL)
Moderation policy: Light, mostly invisible
view the rest of the comments
Just to add on to this, I understand the technical benefits to steppers, but surely a stepper motor could be given some servo-like functionality by simply adding encoders to the stepper shafts. You can get rotational hall sensors with diametric magnets for a couple bucks each. Even if you weren't using the encoders to operate the motors directly, you could use them for fault detection. An encoder with 10 bit accuracy could just about match the substeps of stepper motors for resolution.
Now, most of the time when a stepper gets out of, well, step, it's because something's gone wrong and you wouldn't necessarily want the printer to correct it directly, but simply being able to pause on a fault and record the fault' time and direction would make a big difference to troubleshooting.
I think it would be a better idea to use linear encoders if you were going to add encoders to the shaft, as that way you could directly readout the position of the tool along an axis without issues like backlash that would mess up your calculated position. This is what I've seen on (both manual and CNC) mills and lathes.
Doesn't the "missed step detection" on the Prusa printers already achieve a lot of that? I think it monitors the current to the motor and flags any abnormal behavior, without needing extra hardware on the motor.
That's not to knock the value of positional feedback, which is clearly superior, but just to say that I don't think this idea has been entirely neglected.