this post was submitted on 12 Dec 2023
849 points (96.4% liked)
Memes
46042 readers
1737 users here now
Rules:
- Be civil and nice.
- Try not to excessively repost, as a rule of thumb, wait at least 2 months to do it if you have to.
founded 5 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I found a few typos. In the 2nd paragraph under the section "strong feelings", you use "than" when it should be "then". More importantly, when talking about distributive properties, you say x(x+z)=xy+xz. I believe you meant x(y+z)=xy+xz.
Otherwise, I enjoyed that read. I'm embarrassed to say that I did think pemdas meant multiplication came before division, however I'm proud to say that I've unconsciously known that it's important to avoid the ambiguity by putting parentheses everywhere for example when I make formulas in spreadsheets. Which by the way, spreadsheets generally allow multiplication by juxtaposition.
Thank you so much for taking the time and reading the post. I just fixed the typos, many thanks for pointing them out.
There is nothing really to be embarrassed about and if you look at the comment sections of such viral math posts you can see that you are certainly not the only one. I think that mnemonics that use "MD" and "AS" without grouping like in "PE(MD)(AS)" are really to blame here.
An alternative would be to drop the inverse and only use say multiplication and addition as I suggested with "PEMA" but with "PEMDAS" one basically sets up students for the problem that they think that multiplication comes before division.
Actually it should be x(y+z)=(xy+xz), as that's exactly where a lot of people go wrong. They go from 6/2(1+2) to 6/2x3, instead of to 6/(2x3), and thus end up with the wrong answer (cos that flipped the 3 from being in the denominator to being in the numerator. i.e. instead of dividing by 3 they are now multiplying by 3, all because they removed brackets prematurely).
It’s actually fine to do multiplication before division, you just have to be sure about which numbers are intended to be included in the divisor of your fraction!