this post was submitted on 03 Feb 2024
82 points (100.0% liked)
Technology
37708 readers
347 users here now
A nice place to discuss rumors, happenings, innovations, and challenges in the technology sphere. We also welcome discussions on the intersections of technology and society. If it’s technological news or discussion of technology, it probably belongs here.
Remember the overriding ethos on Beehaw: Be(e) Nice. Each user you encounter here is a person, and should be treated with kindness (even if they’re wrong, or use a Linux distro you don’t like). Personal attacks will not be tolerated.
Subcommunities on Beehaw:
This community's icon was made by Aaron Schneider, under the CC-BY-NC-SA 4.0 license.
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
People now "ChatGPT isn't real AI because it says dumb shit all the time". People then: "Prolog is AI because it can solve logic problems".
Something with moving goalposts or something
They are both different parts of the same problem. Prolog can solve logical problems using symbolism. ChatGPT cannot solve logical problems, but it can approximate human language to an astonishing degree. If we ever create an AI, or what we now call an AGI, it will include elements of both these approaches.
In “Computing Machinery and Intelligence”, Turing made some really interesting observations about AI ("thinking machines" and "learning machines" as they were called then). It demonstrates stunning foresight:
You can view ChatGPT and Prolog as two ends of the spectrum Turing is describing here. Prolog is "thinking rationally": It is predictable, logical. ChatGPT is "acting humanly": It is an unpredictable, "undisciplined" model but does exhibit very human-like behaviours. We are "quite ignoerant of what is going on inside". Neither approach is enough to achieve AGI, but they are such fundamentally different approaches that it is difficult to conceive of them working together except by some intermediary like Subsumption Architecture.
This is what I expect too. And hope - LLMs are way too unpredictable to control important things on their own.
I often say LLMs are doing for natural language what early computation did for mathematics. There's still plenty of mathy jobs computers can't do, but the really repetitive ones are gone and somewhat forgotten - nobody thinks of "computer" as a title.
yeah, they're really in the wrong to think that we'd have some technical advancement within the last 40 years and we should expect more than a probabilistic text generator. 🙃
Like this?
ChatGPT: 30 Year History
I know how ML works, my comment was a persiflage on over-simplifying the topic of AI and logic. I originally marked it with an
/s
to indicate sarcasm, but I think this gets lost with newer generations, so now I replaced the/s
with the upside down emoji (🙃) which also seems to indicate sarcasm.Is /s way older than I thought it was?
No need to
%s/\/s/🙃/g
on my account... but the comment is ambiguous either way, and I think that video is pretty decent, so... 🤹Same old story: anything a computer can do, is an "algorithm"; anything it can not yet do, is "AI"... 🙄
if you listen to marketing of companies using Machine Learning, AI can do everything right now.
That is correct, AI has always been able to do everything "right now in the future". ML, NNs, GPT, etc. are all terms to distinguish the actual algorithms, from the abstract future goal of "AI".
The literal first AI was an analog computer that the guy gave feedback to images on. If it's a circle or a square, if it guesses right or wrong.
It's literally the same training that we have used for models ever since and currently, and there are people trying to say Generative Imaging isn't AI.
Y'all. It's the exact thing AI was created in mind for.
Correct. When people say "ChatGPT isn't real AI" they mean it's not AGI (Artificial General Intelligence). The term "Artificial Intelligence" has been the proper term for the study of machine learning since the 1956 Dartmouth Workshop.
It's all AI, from the computer player in Battlechess to ChatGPT. It's not all using the same techniques, or have the same capabilities.
I don't think your characterisation of the Dartmouth Project and machine learning are quite correct. It was extremely broad and covered numerous avenues of research, it was not solely related to machine learning though that was certainly prominent.
The thing that bothers me is how reductive these recent narratives around AI can be. AI is a huge field including actionism, symbolism, and connectionism. So many people today think that neural nets are AI ("the proper term for the study of machine learning"), but neural nets are connectionism, ie just one of the three major fields of AI.
Anyway, the debate as to whether "AI" exists today or not is endless. But I don't agree with you. The term AGI has only come along recently, and is used to move the goalposts. What we originally meant by AI has always been an aspirational goal and one that we have not reached yet (and might never reach). Dartmouth categorised AI into various problems and hoped to make progress toward solving those problems, but as far as I'm aware did not expect to actually produce "an AI" as such.
That reminds me of the Square Hole Meme.
That is my thought as well. We'll continuously change the definition of intelligence in order to preserve the notion that intelligence is inherently human. Until we can't.