this post was submitted on 08 Dec 2024
459 points (94.4% liked)

Technology

60314 readers
2874 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 2 years ago
MODERATORS
459
The GPT Era Is Already Ending (www.theatlantic.com)
submitted 1 month ago* (last edited 1 month ago) by cyrano@lemmy.dbzer0.com to c/technology@lemmy.world
 

If this is the way to superintelligence, it remains a bizarre one. “This is back to a million monkeys typing for a million years generating the works of Shakespeare,” Emily Bender told me. But OpenAI’s technology effectively crunches those years down to seconds. A company blog boasts that an o1 model scored better than most humans on a recent coding test that allowed participants to submit 50 possible solutions to each problem—but only when o1 was allowed 10,000 submissions instead. No human could come up with that many possibilities in a reasonable length of time, which is exactly the point. To OpenAI, unlimited time and resources are an advantage that its hardware-grounded models have over biology. Not even two weeks after the launch of the o1 preview, the start-up presented plans to build data centers that would each require the power generated by approximately five large nuclear reactors, enough for almost 3 million homes.

https://archive.is/xUJMG

you are viewing a single comment's thread
view the rest of the comments
[–] errer@lemmy.world 12 points 1 month ago

Even if you accept the claim that o1 understands, instead of mimicking, the logic that underlies its responses, the program might actually be further from general intelligence than ChatGPT. o1’s improvements are constrained to specific subjects where you can confirm whether a solution is true—like checking a proof against mathematical laws or testing computer code for bugs. There’s no objective rubric for beautiful poetry, persuasive rhetoric, or emotional empathy with which to train the model. That likely makes o1 more narrowly applicable than GPT-4o, the University of Pennsylvania’s Rao said, which even OpenAI’s blog post announcing the model hinted at, stating: “For many common cases GPT-4o will be more capable in the near term.”

But OpenAI is taking a long view. The reasoning models “explore different hypotheses like a human would,” Chen told me. By reasoning, o1 is proving better at understanding and answering questions about images, too, he said, and the full version of o1 now accepts multimodal inputs. The new reasoning models solve problems “much like a person would,” OpenAI wrote in September. And if scaling up large language models really is hitting a wall, this kind of reasoning seems to be where many of OpenAI’s rivals are turning next, too. Dario Amodei, the CEO of Anthropic, recently noted o1 as a possible way forward for AI. Google has recently released several experimental versions of Gemini, its flagship model, all of which exhibit some signs of being maze rats—taking longer to answer questions, providing detailed reasoning chains, improvements on math and coding. Both it and Microsoft are reportedly exploring this “reasoning” approach. And multiple Chinese tech companies, including Alibaba, have released models built in the style of o1.

If this is the way to superintelligence, it remains a bizarre one. “This is back to a million monkeys typing for a million years generating the works of Shakespeare,” Emily Bender told me. But OpenAI’s technology effectively crunches those years down to seconds. A company blog boasts that an o1 model scored better than most humans on a recent coding test that allowed participants to submit 50 possible solutions to each problem—but only when o1 was allowed 10,000 submissions instead. No human could come up with that many possibilities in a reasonable length of time, which is exactly the point. To OpenAI, unlimited time and resources are an advantage that its hardware-grounded models have over biology. Not even two weeks after the launch of the o1 preview, the start-up presented plans to build data centers that would each require the power generated by approximately five large nuclear reactors, enough for almost 3 million homes. Yesterday, alongside the release of the full o1, OpenAI announced a new premium tier of subscription to ChatGPT that enables users, for $200 a month (10 times the price of the current paid tier), to access a version of o1 that consumes even more computing power—money buys intelligence. “There are now two axes on which we can scale,” Chen said: training time and run time, monkeys and years, parrots and rats. So long as the funding continues, perhaps efficiency is beside the point.

The maze rats may hit a wall, eventually, too. In OpenAI’s early tests, scaling o1 showed diminishing returns: Linear improvements on a challenging math exam required exponentially growing computing power. That superintelligence could use so much electricity as to require remaking grids worldwide—and that such extravagant energy demands are, at the moment, causing staggering financial losses—are clearly no deterrent to the start-up or a good chunk of its investors. It’s not just that OpenAI’s ambition and technology fuel each other; ambition, and in turn accumulation, supersedes the technology itself. Growth and debt are prerequisites for and proof of more powerful machines. Maybe there’s substance, even intelligence, underneath. But there doesn’t need to be for this speculative flywheel to spin