this post was submitted on 17 Nov 2024
613 points (99.4% liked)

Technology

60079 readers
3367 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] humanspiral@lemmy.ca 1 points 1 month ago

The economics of batteries are that they must be fully charged and discharged daily to pay off. A 2 day average cycle is double the cost of energy in using them.

In spring and fall we get positive happy headlines that "all electricity was provided by solar/renewables" during 1 hour or so during a day, or that electricity prices went negative. These seasons are low demand with good enough sun. Batteries get let those days/seasons get to 24 hour power from renewables, but then summer heatwaves won't fill demand even with more sun, winter will not charge up the batteries enough. H2 electrolysis is needed to have enough solar and batteries to cover all those needs, and then use H2 to cover winter supplemental needs. H2 supports not just more solar, but also more batteries. Makes sure batteries can always discharge before the sun comes up.

imagine refueling times is not necessarily going to be critical for all types of commercial use-cases.

Commercial vehicles, need to pay operators for downtime, and downtime is time not earning revenue. it is a bid deal to them.

Aviation struggles with the relatively low energy density in H2.

At $4/gallon diesel/kerosene, a plane will cost 100x in fuel as its purchase costs. We can already produce green H2 at $2/kg compressed. Which is equivalent to $1/gallon gasoline fuel when used in a FC. Redesigning planes, and delta wing for long range specifically, for H2 is worth liquifying the H2 for the weight savings and range over compressed. It's also that price that can compete well with commercial EV charging.