this post was submitted on 25 May 2024
775 points (97.1% liked)
Technology
60070 readers
3523 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Oh I strongly disagree. I’ve been building software for 30 years. I use copilot in vscode and it writes so much of the tedious code and comments for me. Really saves me a lot of time, allowing me to spend more time on the complicated bits.
I'm closing in on 30 years too, started just around '95, and I have yet to see an LLM spit out anything useful that I would actually feel comfortable committing to a project. Usually you end up having to spend as much time—if not more—double-checking and correcting the LLM's output as you would writing the code yourself. (Full disclosure: I haven't tried Copilot, so it's possible that it's different from Bard/Gemini, ChatGPT and what-have-you, but I'd be surprised if it was that different.)
Here's a good example of how an LLM doesn't really understand code in context and thus finds a "bug" that's literally mitigated in the line before the one where it spots the potential bug: https://daniel.haxx.se/blog/2024/01/02/the-i-in-llm-stands-for-intelligence/ (see "Exhibit B", which links to: https://hackerone.com/reports/2298307, which is the actual HackerOne report).
LLMs don't understand code. It's literally your "helpful", non-programmer friend—on stereoids—cobbling together bits and pieces from searches on SO, Reddit, DevShed, etc. and hoping the answer will make you impressed with him. Reading the study from TFA (https://dl.acm.org/doi/pdf/10.1145/3613904.3642596, §§5.1-5.2 in particular) only cements this position further for me.
And that's not even touching upon the other issues (like copyright, licensing, etc.) with LLM-generated code that led to NetBSD simply forbidding it in their commit guidelines: https://mastodon.sdf.org/@netbsd/112446618914747900
Edit: Spelling
I’m very familiar with what LLMs do.
You’re misunderstanding what copilot does. It just completes a line or section of code. It doesn’t answer questions - it just continues a pattern. Sometimes quite intelligently.
Shoot me a message on discord and I’ll do a screenshare for you. #locuester
It has improved my quality and speed significantly. More so than any other feature since intellisense was introduced (which many back then also frowned upon).
Fair enough, and thanks for the offer. I found a demo on YouTube. It does indeed look a lot more reasonable than having an LLM actually write the code.
I'm one of the people that don't use IntelliSense, so it's probably not for me, but I can definitely see why people find that particular implementation useful. Thanks for catching and correcting my misunderstanding. :)