this post was submitted on 27 Dec 2024
324 points (94.8% liked)
Technology
60115 readers
2822 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
This is correct, and I don't think many serious people disagree with it.
Well... depends. LLMs alone, no, but the researchers who are working on solving the ARC AGI challenge, are using LLMs as a basis. The one which won this year is open source (all are if are eligible for winning the prize, and they need to run on the private data set), and was based on Mixtral. The "trick" is that they do more than that. All the attempts do extra compute at test time, so they can try to go beyond what their training data allows them to do "fine". The key for generality is trying to learn after you've been trained, to try to solve something that you've not been prepared for.
Even OpenAI's O1 and O3 do that, and so does the one that Google has released recently. They are still using heavily an LLM, but they do more.
I'm not sure if it's already proven or provable, but I think this is generally agreed. just deep learning will be able to fit a very complex curve/manifold/etc, but nothing more. It can't go beyond what was trained on. But the approaches for generalizing all seem to do more than that, doing search, or program synthesis, or whatever.