this post was submitted on 21 Dec 2023
203 points (97.7% liked)

Technology

60348 readers
4808 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 2 years ago
MODERATORS
 

Scientists successfully replicate historic nuclear fusion breakthrough three times::Scientists in California make a significant step in what could one day be an important solution to the global climate crisis, driven primarily by burning fossil fuels.

you are viewing a single comment's thread
view the rest of the comments
[–] Uranium_Green@sh.itjust.works 5 points 1 year ago (1 children)

I have no disagreement with your assertion, aside from the neglected aspect of in terms of energy in Vs energy out; the research is likely to help inform nuclear weapons design, yet if they are able to achieve more energy out than in (3mj out Vs 2mj in (though of course they required 300mj to run the lasers to produce this reaction)) then they are providing important data that may help inform different future designs of power generating fusion reactors, this is something that current other designs don't appear to have achieved afaik.

I doubt they will ever really use this style as a functional form of power generation, but if what they learn from the research allows eventually for a longer functioning fusion reaction that has an overall positive energy output, then it may be rather valuable.

[–] justJanne@startrek.website 4 points 1 year ago

NIF can't really ever reach Q>1. All the statements of having reached that only include the energy that reaches the capsule. The energy the lasers actually use is orders of magnitude larger.

This theoretical Q>1, where the plasma emits more radiation than it receives, have been reached by other reactors before.

But while tokamak or stellerator designs need a 2-3× improvement to produce more energy than the entire system needs, the NIF would need a 100-1000× improvement to reach that point, which is wholly unrealistic with our current understanding of physics.