this post was submitted on 01 Dec 2023
165 points (89.1% liked)

Asklemmy

44283 readers
500 users here now

A loosely moderated place to ask open-ended questions

Search asklemmy ๐Ÿ”

If your post meets the following criteria, it's welcome here!

  1. Open-ended question
  2. Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
  3. Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
  4. Not ad nauseam inducing: please make sure it is a question that would be new to most members
  5. An actual topic of discussion

Looking for support?

Looking for a community?

~Icon~ ~by~ ~@Double_A@discuss.tchncs.de~

founded 5 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[โ€“] thebestaquaman@lemmy.world 1 points 1 year ago (1 children)

To be fair, the result of this calculation only depends on the area/volume ratio of the human. I used the specific cylinder, because humans are roughly cylindrical, and have a volume of roughly 100 L. The surface area of a regular human is probably a bit larger than that of a cylindrical one though.

[โ€“] CanadaPlus@futurology.today 2 points 1 year ago* (last edited 1 year ago)

That's true, and in this case where the layer is a single molecule thick, pores and even cellular structure will add to it quite a bit. Hell, at that scale it's probably hard to define any solid boundary to the body at all, since you'll have things like the surface of evaporating sweat. Once again, we need to know a bit more about how the magic works to give a single answer.

Our mathematician would have to add a measure on subset boundaries I guess. Or maybe just hand the problem off to a big boy who can handle things in the real world (zing!).