Selfhosted
A place to share alternatives to popular online services that can be self-hosted without giving up privacy or locking you into a service you don't control.
Rules:
-
Be civil: we're here to support and learn from one another. Insults won't be tolerated. Flame wars are frowned upon.
-
No spam posting.
-
Posts have to be centered around self-hosting. There are other communities for discussing hardware or home computing. If it's not obvious why your post topic revolves around selfhosting, please include details to make it clear.
-
Don't duplicate the full text of your blog or github here. Just post the link for folks to click.
-
Submission headline should match the article title (don’t cherry-pick information from the title to fit your agenda).
-
No trolling.
Resources:
- selfh.st Newsletter and index of selfhosted software and apps
- awesome-selfhosted software
- awesome-sysadmin resources
- Self-Hosted Podcast from Jupiter Broadcasting
Any issues on the community? Report it using the report flag.
Questions? DM the mods!
view the rest of the comments
This is a good tool for visualizing your raid needs from your capacity and total number of drives.
https://www.seagate.com/products/nas-drives/raid-calculator/
I'll preface that I'm no raid expert, just a nerd that uses it occasionally.
The main benefit of most raid configurations is the redundancy they provide. If you lose one drive, you do not lose any data. It's kinda obvious how you can have 1:1 redundancy, you just have an exact copy of the drive. But there are ways to split data into three chunks so that you can rebuild the data from any two chunks, and 5 chunks so that you can loose and two chunks. Truly understand how raid does this could easily be an entire college course.
Raid 0 is the exception. All it does is "join together" a bunch of drives into one disk. And if you lose an individual disk you likely will lose most of your data.
Another big difference is read/write speed. From my understanding, every raid configuration is slower to read and write than if you were using a single drive. Each raid configuration is varying levels of slower than the "base speed"
I typically use raid 5 or 6, since that gives some redundancy, but I can keep most of my total storage space.
The main thing in all of this is to keep an eye on drive health. If you lose more drives than your array can handle, all of your data is gone. From my understanding, there is no easy way to get the data off a broken raid array.
I've mentioned it in another reply, but read/write speed isn't terribly important to me, as the whole thing is gonna be bottlenecked by a 1GBPs connection anyways. From what I read from the other replies and online, RAIDz1 sounds like the thing I'm gonna go with, as it seems robust enough and my NAS is powerful enough for the performance hit to not really matter...